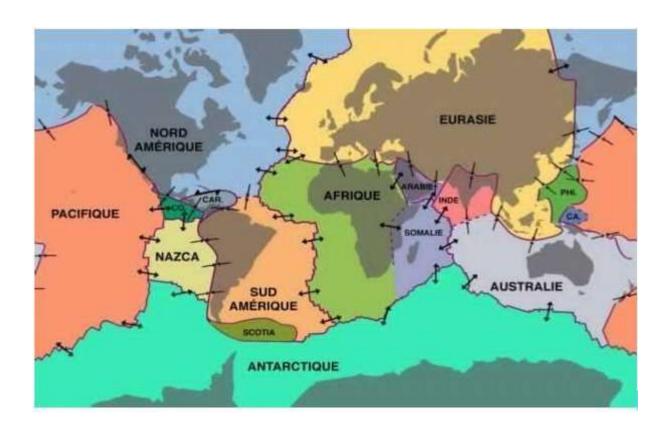
SERIE D'EXERCICES SUR LA GEOLOGIE

HALWAR GROUPE SCOLAIRE


SVT

LA TECTONIQUE DES PLAQUES

Exercice 1

La carte ci-dessous représente les plaques lithosphériques et les mouvements qui les affectent.

- 1) Nomme les plaques lithosphériques les plus visibles.
- 2) Cite les phénomènes géologiques qui se déroulent dans les zones d'écartement des plaques.
- 3) Cite les phénomènes géologiques qui se déroulent dans les zones de rapprochement des plaques.
- 4) Explique le moteur de la mobilité des plaques.
- 5) Liste les conséquences de la mobilité des plaques.

Exercice 2

Définis les mots ou groupes de mots suivants :

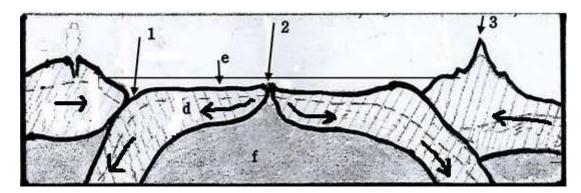
Lithosphère ; Phénomène de convergence ; Subduction ; Collision ; Obduction ; Rift ; Accrétion

Exercice 3

Recopie le numéro des affirmations exactes ; puis corrige les affirmations inexactes.

- 1/ La tectonique des plaques est une théorie qui décrit le globe terrestre
- 2/ Les plaques sont de nature visqueuse
- 3/ La chaine de montagne de l'Himalaya résulte de la divergence de deux plaques
- 4/ La mobilité des plaques est liée aux courants de convections de l'asthénosphère
- 5/ Les dorsales sont des limites de plaques

- 6/ On trouve des dorsales océaniques au niveau des zones d'écartement des plaques
- 7/ La subduction correspond à la rencontre de deux plaques continentales
- 8/ L'énergie interne du globe provient de la chaleur produite par les éléments radioactifs présents dans la croûte terrestre
- 9/ Les limites des plaques sont les mêmes que celles des continents
- 10/ Plaques se rapprochent au niveau des zones de divergence
- 11/Les frontières des plaques sont des zones très sismiques
- 12/ Les plaques lithosphériques et océaniques ont la même épaisseur
- 13/ Les zones actives correspondent aux limites des plaques
- 14/ Le rapprochement de deux plaques océaniques peut entrainer la diminution de l'océan

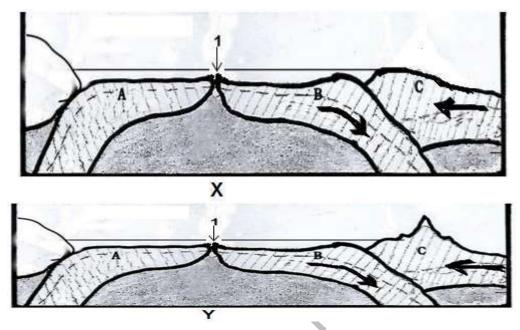

Exercice 4

Associe chacun des mots ou groupes de mots de la colonne 1 à sa définition (colonne 2) en utilisant les chiffres et les lettres. Exemple : 8 - h

Colonne 1	Colonne 2	
1/ Dorsale océanique	a/ Ecartement de deux plaques de la lithosphere	
2/ Rift	b/ Variation de la température du globe Terrestre	
3/ plaque lithosphérique	c/ Zone du manteau moins rigide située sous la lithosphère	
4/ Asthénosphère	d/ Enfoncement d'une lithosphère océanique dans l'asthénosphère	
5/ Subduction	e/ Relief sous-marin à double pente	
6/Gradient géothermique	f/ fossé d'effondrement	
7/ Divergence	g/ Vaste surface du globe géologiquement peu ou pas active	

Exercice 5

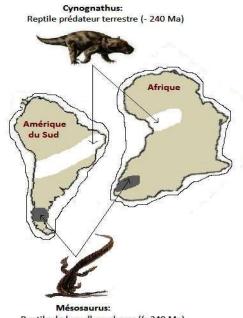
Le schéma ci-dessous représente une coupe partielle du globe terrestre qui peut être le siège de plusieurs phénomènes géologiques dynamiques ayant de nombreuses conséquences.



- 1- Décris les mouvements qui affectent les plaques lithosphériques en (2).
- 2- Considérant le sens des flèches liées au phénomène (2), déduis la conséquence du mouvement des plaques lithosphériques sur la taille de l'océan (e).
- 3- Décris le comportement des plaques lithosphériques en (1).
- 4- Considérant le sens des flèches liées au phénomène (1), déduis la conséquence du mouvement des plaques lithosphériques sur la taille de l'océan (e).

5- Les effets de ces deux phénomènes sur la taille de l'océan sont-ils les mêmes ? Justifie ta réponse

Exercice 6


Les deux schémas ci-dessous représentent la même région du globe à deux époques différentes : Y correspond au temps t et X correspond au temps t-120 millions d'années.

- 1- Décris les mouvements qui affectent les plaques B et C au temps X.
- 2- Indique le résultat des mouvements de ces plaques au temps

Exercice 7

Alfred Wegener est le premier en 1951 à émettre l'hypothèse que les continents étaient autrefois réunis en une seule masse continentale appelée la Pangée.

Reptile de lacs d'eau douce ((- 240 Ma)

- 1- En considérant la forme de continents africain et sud-américain, formule une hypothèse pour montrer la disposition relative (l'un par rapport à l'autre) des deux continents à l'époque de la Pangée.
- 2- A partir du document ci-dessous indique les arguments qui expliquent que les continents africain et sud-américain étaient jadis unis selon la théorie d'Alfred Wegener.

LA FORMATION DES ROCHES METAMORHIQUES

Exercice 8

Recopie les numéros des affirmations ci-dessous ensuite écris après chaque numéro V lorsque l'affirmation est juste ou F si l'affirmation est fausse

- 1) La plupart des roches métamorphiques ont un aspect feuilleté
- 2) Seules les roches sédimentaires peuvent se métamorphiser
- 3) Une roche sédimentaire ou magmatique peut se métamorphiser sous l'effet de la pression et de température élevée.
- 4) La chaleur dégagée par la roche magmatique n'entraine pas de métamorphisme

Exercice 9

Recopie les numéros des mots suivants ensuite ajoute après chaque numéro la lettre qui correspond à la définition juste

Mots:

- 1) Ardoise
- 2) Métamorphisme
- 3) Gneiss
- 4) Foliation
- 5) Schistosité

Définitions

- a) Transformation d'une roche préexistante sous l'effet de la pression et/ou de la température
- b) Roche métamorphique provenant de la transformation de l'argile
- c) Roche métamorphique formée de lit de mica noir alternant avec des lits de cristaux clairs de quartz et de feldspath
- d) Résulte de l'organisation de certaines roches en feuillets parallèles
- e) Résulte de l'aplatissement et de l'orientation des cristaux.

Exercice 10

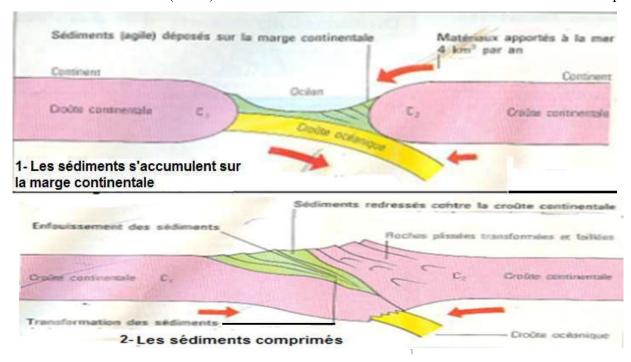
- 1. Recopie le tableau ci-dessous.
- 2. Classifie dans ce tableau les roches dont les noms suivent : Micaschiste, granite, Gneiss, argile, amphibolite, marbre, basalte, ardoise, pyroxénite.

Métamorphique	volcanique	plutonique	sédimentaire

Exercice 11

- 1. Cite les caractères communs aux roches métamorphiques.
- 2. Rappelle les noms des différents types de métamorphismes et leurs caractéristiques.
- 3. Définis les termes et expressions suivants: métamorphisme, épizone, catazone et facteurs du métamorphisme.

Exercice 12


Sur ce tableau on a enregistré des renseignements concernant 3 roches (R1, R2, R3) au cours de trois étapes successives

	R1	R2	R3
Type de roche	Granite	Gneiss oeillé	Gneiss à grains fins
Composition minérale	Quartz, feldspath, mica	Quartz, feldspath, mica	Quartz, feldspath, mica
Disposition des minéraux	Gros cristaux de feldspath, du quartz un peu étiré et du mica paillettes	Du feldspath allongé, des paillettes de mica et quartz organisé en long rubans	Formé de petits cristaux qui ont tous la même taille et disposés en feuillets

- 1. Compare la composition minérale des 3 roches.
- 2. Indique les transformations qui ont affecté les différents minéraux des roches en passant de R1 à R2, puis de R2 à R3
- 3. Identifie le phénomène qui a transformé les roches R1 et R2.

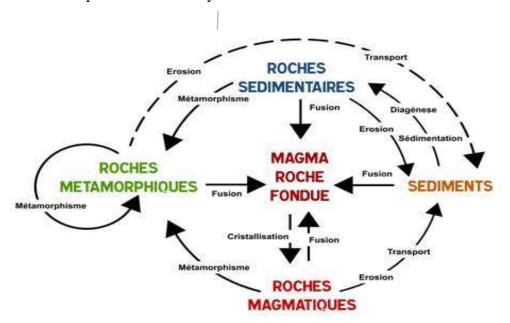
Exercice 13

Les schémas ci-dessous (1 et 2) mettent en évidence la circulation de la matière et le métamorphisme.

- 1. Déduis du schéma l'origine des sédiments.
- 2. Décris les mouvements qui affectent les croûtes dans le document 1.
- 3. Identifie les transformations qui affectent les sédiments du document 2.
- 4. indique l'origine des changements d'état des sédiments.
- 5. Propose le résultat final de ces transformations.

Exercice 14:

Ces 4 schémas ci-dessous révèlent dans le désordre la transformation des sédiments dans les géosynclinaux.


- 1. En utilisant les numéros replace ces schémas dans l'ordre normal
- 2. Décris les transformations ainsi les mises en ordre.
- 3. Identifie le(s) facteur(s) responsables de ces transformations.
- 4. L'intrusion du granite provoque également la transformation des roches encaissantes.
- a) Décris ces transformations.
- b) Compare les facteurs qui sont responsables de ces transformations à ceux qui interviennent dans les phénomènes décrits dans les questions 1 et 2.

LE CYCLE DES ROCHES

Exercice 15

Exercice 16

A partir du cycle de roche ci-dessous, rédige un texte résumant les transformations qui permettent de passer d'une étape à une autre du cycle de roches.

